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NUMERICAL SOLUTIONS OF ONE-DIMENSIONAL MHD 
EQUATIONS BY A FLUCTUATION APPROACH 
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SUMMARY 
In this paper a higher-order Godunov method for one-dimensional solutions of the ideal MHD (magneto- 
hydrodynamics) equations is presented. The method uses a fluctuation approach and includes a new sonic fix and a 
new Roe averaging. After a short introduction the MHD equations in conservative form are given. The flux is 
rearranged such that the eigenstructure is not changed. This rearrangement allows fi l l  Roe averaging for any value 
of adiabatic index (contrary to Brio and Wu’s conclusion). A new procedure to get Roe-avenged MHD fields at 
the interfaces between left and right states is then presented and some usehl identities are given. Next the second- 
order-limited fluctuation approach is presented in full detail. The new sonic fix for MHD and the procedure for 
applying this fix to the sonic points are then given in detail. Numerical results obtained with the described method 
are presented. Finally, conclusions are given. 
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1. INTRODUCTION 

Conservative numerical schemes based on higher-order Godunov methods have been effectively used 
for computing discontinuous solutions of hyperbolic systems of equations. Several examples of the 
solution of equations of hydrodynamics by such schemes are available. Most of these schemes suffer 
from sonic points at which characteristic speeds vanish. Several examples of fixing the solution at such 
points are also available in the 

Finite volume and fluctuation approaches based on highersrder Godunov schemes are two of the 
favourite conservative methods. In the finite volume approach the local solution that changes in time is 
obtained by means of a numerical flux function evaluated at the interfaces between mesh points. The 
fluctuation approach is based on obtaining this local solution via the local imbalance of fluxes. This 
approach is more sensitive to degeneracy fixes and implementing the boundary conditions with it is 
rather simple. 

First numerical results for the solution of MHD equations were published by Brio and Wu,’ who 
solved the onedimensional ideal MHD equations using Roe’s method. They showed that compound 
waves (a slow shock and an attached rarefaction wave) can exist in MHD. Zachary and Colella’ 
applied a method originally developed by Bell et aL9 to the ideal MHD equations and obtained results 
that were in good agreement with those reported by Brio and Wu. One of the test problems Brio and 
Wu presented included a strong sonic point where they used a type of Harten fix. Zachary and Colella 
used structure coefficients to detect and fix these sonic points. In this work, Roe’s fluctuation approach 
is used for solving the ideal MHD equations numerically in one dimension. A new sonic fix which 
eliminates the unphysical expansion shock and a new Roe averaging which guarantees that the 
Rankine-Hugoniot conditions are satisfied at the interfaces between grid points are presented.” 
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2. BASIC EQUATIONS 

The one-dimensional ideal MHD equations in conservative form are written as 
au w(u) - 
- + - = SX(U), 
at 

where U is the state, F (  U )  is the flux and Sx( 6)  is the source vector which are explicitly given by 

Here p is the density, ? is the velocity, 3 is the magnetic field and EL and p*I are the total 
perpendicular energy and total perpendicular pressure respectively, 

B i  P * , = P + - - ,  
Bz 
8n 8n EL = i p V 2  + A + p e ,  (3) 

where V 2  = V: + Vy’ + V:l B: = B; + B:, a = J(yP/p) is the speed of sound and e is the internal 
energy related to the scalar pressure P by the equation of state e = ( P / p ) / ( y  - 1). 

When an operator-splitting scheme is used for two-dimensional problems, EL has to be redefined in 
each direction (see Reference 8 for a similar procedure). When curvilinear geometries are considered, 
the sourse vector must be split very carefully (see, e.g. Reference 10). Equation (2) are written in this 
way because there are a few advantages. The first advantage is that the eigensystem of the flux 
Jac~bian’~*~’~ remains unchanged. Secondly, full or partial Roe averaging for any value of adiabatic 
index y becomes possible (contrary to Brio and Wu’s conclusion7). Note that (for hydrodynamics) full 
Roe averaging of the density, velocity and pressure fields at the interfaces between meshes is achieved 
by enforcing that the Rankine-Hugoniot (R-H) conditions be satisfied exactly. In MHD, Roe 
averaging of the density and velocity fields remains the same as in hydrodynamics. It is shown for the 
first time in this paper that Roe averaging is also feasible for the pressure and the magnetic field if its 
parallel component (i.e. B, in one dimension) does not vary in space. If it varies in space, simple 
arithmetic averaging can be used, this is called ‘partial Roe averaging’ in this work. The final 
advantage is that the problems arising from the a. = 0 conditions are mostly eliminated (which will 
be the subject of subsequent publications). 

In Roe’s fluctuation approach6 the gradients of U and F are given by the following eigenvector 
decompositions in which the characteristic waves are decomposed into k simple wave contributions: 

AU = C (4) 
k 

k 

where & and ?k are the eigenvalues and right eigenvectors of the Jacobian matrix respectively, 
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1” = aF/aU,  6 k  and jk are the wave and source strengths and the ‘tildes’ above the quantities 
represent their Roe-averaged values at the interfaces between mesh points. 

3. ROE AVERAGING 

The importance of Roe averagingi” is that it gives the fields at the interfaces between grid points in 
such a way that the R-H jump conditions are satisfied. According to Brio and Wu,’ Roe averaging is not 
feasible for the ideal MHD equations unless y = 2. However, it is shown in this section that Roe 
averaging of the density and velocity fields is feasible for any value of y and that Roe averaging of the 
magnetic field and pressure is feasible only for a constant parallel magnetic field. Whenever the parallel 
field changes in space, arithmetic averaging can be used, which results in spreading the shocks and 
dmontinuities. The procedure for finding Roe-averaged quantities is equivalent to seeking 
an approximation for averaged Jacobian (A  = aF/BU) with eigenvalues & and eigenvectors &. This 
approach is used by GlaisterI2 and is an alternative to the approach used by Brio and Wu.’ Assuming the 
eigenvectors given in Reference 10, the procedure starts with writing out equation (4) and (5) explicitly: 

ALp] = 56f(6, + 67) + --.a& + 63) + 5h. (7) 

(8) 

(9) 

5fif” 
a 

A[VJ = Gffif(67 - 61) 4- fi~6,(65 - 53), 

A[ V,] = -fiA6,B,.S(57 - 51) + fi&B,S(ks - 63) - 7 B Z  (&j - 62), 
4nP 

Note that equation (1 3) leads to 

WI = 5fiffSii(65 + 63) + 55f0;(.7 + GI), 
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where y' = (y - 2) / (y  - 1 )  and S = Sign(&). In addition, j y J  and Gs,f are defined by 
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where &, Us, and UA are fast, slow and Alfven speeds respectively given by 

f i ~  = J@/4nij), (27) 
with a*2 - a  - -2 +B2/4zij. 

Here 8, and 6, represent the cosine and sine of the rotation angle of the perpendicular magnetic field 
BI on the y z  plane respectively and gS and 6f predict how closely the sound and Alfven waves 
propagate with respect to the fast wave respectively. 

Since the MHD equations are not strictly hyperbolic, there are some points at which some of the 
eigenvectors may become degenerate and some of the parameters cannot be determined accurately. For 
instance, By and B, become indeterminate as BI approaches zero. This is the limit whch consists of 
three degeneracies depending on the relative values of the sound and Alfven waves. If UA >> a, fast 
and Alfven waves; if UA << a, slow and Alfven waves; and if UA = a, fast, Alfven, and slow waves 
travel with almost the same speed. It is suggested in References 7 and 8 that one may take By = 6, = 1 /42  whenever Bl gets too small. Even though this arbitrary fix preserves the 
orthonormality of the eigenvectors, it is not unique. For example, checking the relative magnitudes 
of By and Bz near such a point and assigning different waves to By and B, such that the square sum of 
them becomes unity produces another fix. Yet another fix was introduced by Zachary er who 
separated and handled these three situations by means of structure coefficients. 

Another degeneracy point occm when both Bx vanishes and B l  changes sign (or B goes to zero). In 
this limit Alfven, slow and sound waves travel with the same speed. This situation may lead to a strong 
sonic point and hence a non-physical expansion shock in the numerical solutions if it is not handled 
properly. In this paper a new fix of this sonic point is introduced. The idea of this sonic fix was 
originally introduced by Roe'4 for the Euler equations and was extended to MHD by Aslan.'O 

It is shown that the R-H conditions given by equations (4) and ( 5 )  produce 14 equations to be solved 
for seven primitive state averages (i.e. 3, fix, py, pz, E,,, bz, and p ) .  In what follows, the procedure for 
obtaining these avemges is summarized. 

Using equation (16) in equation (17) and considering equations (8), (14) and (15), one obtains 

A[P + p V f ]  = ~ x A [ p V x l  + pfixAIVxl. (28) 

AbVX1 = PXA[Pl+ ijA[VXl. (29) 

Using equation (7) and (8) in equation (16) gives 

Assume now that the jump around the averaged state 0 is taken as A [ U ]  = UR - UL, where 
superscripts R and L denote the right and left states around the interface respectively. In this case, with 
the help of equations (14) and (29), equation (28) leads to 

- JpR v," + JpL v," 
JPR + JPL . 

vx = 

Using this in equation (29) results in 

i j  = J(PRPL). 
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Multiplying equation (7) by Vx V, and equation (8) and (9) by p V, and p V, respectively, it is easy to see 
that equation (1 8) produces 

A[pV.V,] = k ~ , A [ p ]  + Pv,A[Vx] + ,5pxA[V,]. (32) 

Applying the same procedure to equation (19) results in 

A[pVxV,] = VxVzA[p] + fiVzA[Vx] + fiVxA[Vz]. (33) 

Multiplying equation (11) and (12) by B, one can see that equations (18) and (19) also produce 

A[BXB,,Zl = kmy.zI (34) 

which will be used later. It is trivial to show that equation (7) and (9) and equation (32) and (33) lead to 

A b  Vy,zl = ~,,ZA[Pl + iwV,,Zl. (35) 
From equation (35) the following averages for Vy and V, are obtained: 

- JpRV,R + JpLV; - JpRVP + JpLV,L v, = 
JPR+JPL ’ JPR + JPL . 

v, = 

Notice that the first, third and fifth terms on the right-hand side of equation (20) and (21) are 
VxA[B,] and vxA[B,] respectively. Notice also that, using the identities 

where oII = J ( B : / 4 n p ) ,  the rest of these terms lead to &A[VX] - bxA[VyS] .  In this case equations 
(20) and (21) turn into 

A[VXBy,,] - AIVy,zBxl = kAPy.z l  + &A[V. l  - & Y V y , A  (38) 

which splits into (by means of equations (8x12)) 

A[VXB,,,l = kA[B,,Zl+ &,zA[Vx19 (39) 

“,,zBx1 = kA[V,,.I. (40) 

It is easy to show that equation (39) results in the following amazingly simple averages for By and 
Bz: 

It is easy to see that equations (34) and (40) are satisfied only when bx = B: = B:, which states that 
AB, = 0. If this condition does not hold, the averages for magnetic field and pressure do not exist even 
though the averages for density and velocity still hold. 

Taking advantage of the results found so far, using the expressions 
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and going through tedlous but trivial derivations, equation (22) leads to 

which produces the simple equation for the average pressure 

- JpLP" + JpRPL P =  JPR + \ /PL 
(43 1 

Therefore all 14 equations given above are utilized such that the averages for the seven primitive states 
will satisfy all these equations only if B, is constant in space. 

If B, is not constant (along with equations (3 l), (32) and (36)), one can take the following averages 
of magnetic field and pressure: 

L L 

In this case, as Brio and Wu' remarked, the stationary discontinuities will no longer be the steady 
solutions of the scheme but will still be resolved within only a few grid points. 

4. NUMERICAL INTEGRATION WITH FLUCTUATION SPLITTING 

Considering a uniform grid and denoting the state vector by U,!' at time t = nAt and location 
x = xo + iAx, equation (1) is rearranged to read 

Taking AF = F,!'+, - F,!' and using the decompositions given in equations (4)-(6), equation (45) 
becomes 

In the fluctuation approach6 one evaluates the fluctuation for each interval [xi,x;+l] by 

and the total signal by = ( A t / ~ h ) 4 : + ~ / ?  In this equation (46) turns into 

k 

where p may be i or i + 1 depending on a k ,  the sign of &. 
For each kth field, subtracting q+i12 from Uj+1/2+ak/2 therefore completes an upwind, first-order, 

conservative and local bounding scheme. A Lax-Wendroff-type, second-order-limited, conservative 
scheme is completed by adding 

W" /b!+1/2 N+i ,2 (49) 

to Uj+l/2+ok/2 and subtracting it from Ui+i/Z-ak/Z.  Here Q is the flux limiter (required for local 
boundness) and 

(50) k g+ 1/2 = g1 - I w t +  1/29 b" = t[(l - O k ) b I + , / 2  + (1 + a k ) $ + 1 / 2 1 *  

where c k  = ( A t / h ) i k  is the Courant number for the kth field. 
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It is noted that as the limiters" become more compressive (e.g. Roe's Superbee), the shocks and 
discontinuities become rather sharp but the post-slow-shock oscillations increase. However, less 
compressive limiters (e.g. van Leer's or van Albada's limiter) produce less oscillations but less sharp 
discontinuities. Therefore it is obvious that the accuracy of the solutions depends on the type of limiter 
used. This is an issue on which more investigation must be done. 

5.  NEW SONIC FIX 

In order to understand the new sonic fix, equation (1) is written as 

u, + A ( U ) U ,  = s,, (51) 

where A ( U )  is the flux Jacobian. Differentiate this equation with respect to x and multiply by the left 
eigenvector of A( U) to get 

l . [ U x ~ + A , U x + A U , - S x ]  = O .  (52) 

(53) 

Since &A = &I at the sonic point where Jk vanishes, the above equation becomes (for the kth field) 

Ik uxt = 1, [-Ax r/, + sx] . 
Here the term I~U,, can be defined as a measure of the rate at which the wave of the sonic family is 
de~aying. '~ Let 6Ul and dUi be the proper changes in the left and right cells respectively after U' is 
obtained by any method explicitly from U" (i.e. SU;,, = U:,R). Writing 

or 
1 

/kux( = -Ik[dui AXAt - du,*], (55)  

equation (53) becomes 

1k[6ui = du;] = AXAtlk[-AxUx -l- s x ] k .  

lk[dui + du;] = Ik[8uR + du,] 

lk[duL+ - dUL] = K k ,  

(56) 

(57) 

(58 )  

In order for this proper change to be equal to the numerical change SUR = ~ U L ,  one needs 

for conservation. It is easy to see that equation (56) and (57) now lead to 

1k[Sug - duR] = K k ,  (59) 

where Kk = tlk[dUR - SUL + @,U, - S,)AXAt]. Premultiplying equations (58 )  and (59) by rk and 
using 1,. rk = 1 leads to the numerical error on the left and right states after U' is obtained: 

&L but - bUL = K k # ,  (60) 

&R dui - 8uR = Kk#, (61) 

Therefore adding Kk# to UL and subtracting it from U i  will cancel these errors. The procedure for 
fixing the sonic point therefore begins by first detecting the sonic point due to the kth field after the 
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new state Lpc is obtained from U". Then the corrected states at time level n + 1 are obtained via 

6. NUMERICAL RESULTS 

The scheme described in previous sections is applied to Sod's shock tube problem16 as a check on the 
coding as the magnetic field vanishes. The initial data for this problem are gven by pL = 1.0, 
pR = 0.125, PL = 1.0, PR = 0.1 and 7 = 0, = 0 for an ideal gas with y = 1-4. The exact solution 
consists of a shock and contact discontinuity moving to the right and a rarefaction wave moving to the 
left. A uniform mesh of 100 points with A r / h  = 0.41 1 and the fluctuation approach with the 
Superbee limiter are used and the results are plotted after 35 time steps (at t = 0.144) in Figures l(a) 
and I@). Note that the labels (rf-, c, s+) on these figures correspond to rarefaction fan, contact and 
slow shock waves respectively. These satisfactory results display very sharp shock and contact 
discontinuities and are very much better than those obtained by Sod.16 

The next test problem is an MHD version of Sod's shock tube problem originally introduced by Brio 
and Wu.' In this case a uniform grid of 800 points is used together with A t / h  = 0-2 and an adiabatic 
index y = 2.0. The initial condition is given by 

WL = [ I ,  o,o,o, 0, J(4n),O, 11, W, = [0*125,0,0,0,0, -J(4n),0,0-1]. (64) 
The numerical results obtained from the second-order scheme with full Roe averaging and the 
Superbee limiter for the linear (entropy, Alfven) and van Leer's limiter for the non-linear (slow, fast) 
fields are shown in Figure 2. Note that in obtaining for these results, the limiter was turned off at the 
degeneracy point to create a pointwise dissipation, which is required for non-strictly hyperbolic 
systems." 

The initial jump Elcreates a degeneracy point (EL x 0) at which b,, and P, must be redefined. In 
obtaining these results, the degeneracy point is flagged whenever BI is smaller than a certain value and 
b,, and b, are set to 1 /,/2 at this point. Various numerical experiments showed that choosing this value 
between 0.01 and 0.3 provided a good fix, while the flux showed almost no change within this range. 
The arbitrariness in choosing a small parameter to detect where the magnetic field vanishes and the 
assignment of arbitrary values to S,, and fl, in this limit must be studied fiuther. 
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Figure 1. Numerical solutions for Sod's shock tube problem. The labels (rf-, c, s+) denote rarefaction fan, contact and slow 

shock waves respectively 
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Figure 2. Numerical solutions for Brio and Wu’s first test problem. The results are obtained at t = 0.1 with At/& = 0.2. The 
labels (rf-, cw, c, ss, rf+) denote left-moving rarefaction, compound, contact, slow shock and right-moving rarefaction waves 

respectively 

For the last ten problem the Same grid is used with At/Ax = 0.2. The initial condition is given by 

WL = [l,  0, 0, 0, 0, J(4n),O, 10001, W, = [O-125,0,0,0,0, = J(4~),0,0.1], (65) 
with an adiabatic index y = 5/3. Notice the large initial pressure jump at the interface. In Roe’s method 
this jump causes a strong (unphysical) expansion shock if no fix is done at the sonic point. To 
eliminate this expansion shock, the new sonic fix described in Section 5 is used.l0 In order to show the 
effects of the new sonic fix with Roe averaging and different limiters, V, plots for various cases are 
shown in Figure 3. Figure 3(a) is obtained with arithmetic averaging, the Superbee limiter and no sonic 
fix. As can be seen, there exists an unphysical expansion shock (labelled ‘es’ on the figure) and an 
overshoot on the rarefaction fan and post-shock oscillations. Figure 3@) shows the results after the new 
sonic fix is used. It can be seen that the expansion shock is totally eliminated, but this fix does not 
handle the overshoot and post-shock oscillations. Figure 3(c) is obtained using full Roe averaging. The 
result is that the overshoot and most of the post-shock oscillations are eliminated. Turning off the 
limiter at the shock and using the less compressive van Leer limiter leads to the excellent results shown 
in Figures 3(d) and 4. 

During the numerical experiments the average execution time per grid point was found to be within 
0.14.25 s in real time oq a personal computer (486, 66 MHz, 16 Mbyte RAM). 

7. CONCLUSIONS 

In this paper an explicit, second-order Godunov-type method based on the fluctuation approach is 
presented for the solution of one-dimensional problems in ideal magnetohydrodynamics (MHD). The 
numerical results show that the method is sufficiently robust and can handle degeneracies and sonic 



SOLUTION OF 1D MHD EQUATIONS BY FLUCTUATION APPROACH 579 

40 

30 

VI 20 

I0 

0 

High Mrch Numbu 

;11 
40 

30 

10 

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 
X I 

(4 (b) 

lligli Mach Numbr Iligli Mad  Nuinbcr 

vx 20 "x;r/ 
10 

0 
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 

X I 

(4 (4 
Figure 3. Numerical solutions for high-Mach-number problem of Brio and Wu, showing from (a) to (d) how to eliminate the 

expansion shock and the overshoot on the rarefaction fan and post-shock oscillations 
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Figure 4. Results for Brio and Wu's high-Mach-number problem obtained with the second-order fluctuation approach, Roe 

avenging, the new sonic fix and van Leer's limiter, which is turned off at the shock 



580 N. ASLAN 

points very efficiently. The new sonic fix introduced in this paper provides a thorough treatment of the 
sonic points in MHD and requires no structure coefficients or any kind of artificial viscosity. The new 
Roe averaging is also proven to work very well for any value of the adiabatic index y. The results 
presented in this paper are in excellent agreement with those obtained earlier and create sharper 
discontinuities and shocks. The effect of viscosity at the degenerate points and a two-dimensional 
extension of the method are being investigated and will be the subject of subsequent publications. 
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